RT-Thread+STM32L475VET6——USB鼠标模拟

news/2025/2/23 7:18:31

文章目录

  • 前言
  • 一、板载资源
  • 二、具体步骤
    • 1.配置icm20608传感器
    • 2.打开CubeMX进行USB配置
    • 3. 配置USB
      • 3.1 打开USB驱动
      • 3.2 声明USB
      • 3.3 剪切stm32xxxx_hal_msp.c中的void HAL_PCD_MspInit(PCD_HandleTypeDef* hpcd)和void HAL_PCD_MspDeInit(PCD_HandleTypeDef* hpcd)函数至board.c
      • 3.4 使能USB
    • 4. 编译,烧录


前言

本文采用开发板为STM32L475VET6(潘多拉开发板),使用RT_Thread Studio基于芯片开发模式,系统版本为4.0.3,完成模拟鼠标实验,实现鼠标功能,左键为KEY0,右键为KEY2


一、板载资源

icm20608传感器采用I2C协议,本文采用软件模拟I2C
查阅数据手册:开发板使用的是 PC0 模拟时钟线SCL、PC1 模拟数据线 SDA,
示例:pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。

二、具体步骤

1.配置icm20608传感器

RT-Thread+STM32L475VET6——icm20608传感器

2.打开CubeMX进行USB配置

在这里插入图片描述
生成工程

3. 配置USB

按照官方步骤配置
在这里插入图片描述

3.1 打开USB驱动

在这里插入图片描述

3.2 声明USB

在这里插入图片描述

stm32xxxx_hal_mspcvoid_HAL_PCD_MspInitPCD_HandleTypeDef_hpcdvoid_HAL_PCD_MspDeInitPCD_HandleTypeDef_hpcdboardc_34">3.3 剪切stm32xxxx_hal_msp.c中的void HAL_PCD_MspInit(PCD_HandleTypeDef* hpcd)和void HAL_PCD_MspDeInit(PCD_HandleTypeDef* hpcd)函数至board.c

在这里插入图片描述

3.4 使能USB

一般默认开启
在这里插入图片描述

4. 编译,烧录

示例代码

#include <rtthread.h>
#include <rtdevice.h>
#include <board.h>

#include "icm20608.h"
#include <math.h>

#define DBG_SECTION_NAME "3D_mouse"
#define DBG_LEVEL DBG_LOG
#include <rtdbg.h>

#define PIN_KEY0 GET_PIN(D,10)
#define PIN_KEY2 GET_PIN(D,8)

static rt_sem_t mouse_sem = RT_NULL;

static struct rt_thread usb_thread;
ALIGN(RT_ALIGN_SIZE)
static char usb_thread_stack[0x1000];

static struct rt_thread icm_thread;
ALIGN(RT_ALIGN_SIZE)
static char icm_thread_stack[0x1000];

static struct rt_thread key_thread;
ALIGN(RT_ALIGN_SIZE)
static char key_thread_stack[0x1000];

/* 变动识别值 */
const static float mouse_rang_scope = 6.0f;
/* 读取角度有效角度 */
const static float mouse_angle_range = 80.0f;
/* 移动值的最大值 */
const static float mouse_move_range = 127.0f;
/* 角度移动比 */
#define mouse_ratio (mouse_move_range / mouse_angle_range)
/* 移动步长 */
const static rt_uint8_t mouse_pixel_len = 5;
/* 鼠标响应时间 */
const static rt_uint32_t mouse_sample_times = 0;

static float mouse_cmp_last_x, mouse_cmp_last_y;

#define Gyro_Gr 0.0010653f
#define pi 3.141593f
#define Kp 10.0f
#define Ki 0.008f
#define halfT 0.01f

static float q0 = 1, q1 = 0, q2 = 0, q3 = 0;
static float exInt = 0, eyInt = 0, ezInt = 0;

struct icm_position
{
    icm20608_device_t icm20608_device;
    rt_mutex_t lock;

    float x;           // 传感器 x 位置
    float y;           // 传感器 y 位置
    float z;           // 传感器 z 位置
    rt_int8_t buff[4]; // 发送鼠标的值
};
typedef struct icm_position *icm_position_t;

icm_position_t icm_device = RT_NULL;

static void mouse_meas_check(float *temp)
{
    if (*temp > mouse_angle_range)
    {
        *temp = mouse_angle_range;
    }
    else if (*temp < -mouse_angle_range)
    {
        *temp = -mouse_angle_range;
    }
}

#ifdef __GNUC__

const float __atan2f_lut[4] = {
    -0.0443265554792128, //p7
    -0.3258083974640975, //p3
    +0.1555786518463281, //p5
    +0.9997878412794807  //p1
};
const float __atan2f_pi_2 = 1.5707963;

/* 求平方根 */
static float _sqrt(float x)
{
    float xhalf = 0.5f * x;
    int i = *(int *)&x;
    i = 0x5f375a86 - (i >> 1);
    x = *(float *)&i;
    x = x * (1.5f - xhalf * x * x);

    return 1.0 / x;
}

/* 求绝对值 */
static float _fabs(float x)
{
    return (x >= 0 ? x : (-x));
}

/* 求x / y的反正切值 */
static float _atan2f(float y, float x)
{
    float a, b, c, r, xx;
    int m;
    union {
        float f;
        int i;
    } xinv;

    xx = _fabs(x);
    xinv.f = xx;
    m = 0x3F800000 - (xinv.i & 0x7F800000);
    xinv.i = xinv.i + m;
    xinv.f = 1.41176471f - 0.47058824f * xinv.f;
    xinv.i = xinv.i + m;
    b = 2.0 - xinv.f * xx;
    xinv.f = xinv.f * b;
    b = 2.0 - xinv.f * xx;
    xinv.f = xinv.f * b;

    c = _fabs(y * xinv.f);

    xinv.f = c;
    m = 0x3F800000 - (xinv.i & 0x7F800000);
    xinv.i = xinv.i + m;
    xinv.f = 1.41176471f - 0.47058824f * xinv.f;
    xinv.i = xinv.i + m;
    b = 2.0 - xinv.f * c;
    xinv.f = xinv.f * b;
    b = 2.0 - xinv.f * c;
    xinv.f = xinv.f * b;

    xinv.f = xinv.f + c;
    a = (c > 1.0f);
    c = c - a * xinv.f;
    r = a * __atan2f_pi_2;

    xx = c * c;
    a = (__atan2f_lut[0] * c) * xx + (__atan2f_lut[2] * c);
    b = (__atan2f_lut[1] * c) * xx + (__atan2f_lut[3] * c);
    xx = xx * xx;
    r = r + a * xx;
    r = r + b;

    b = M_PI;
    b = b - 2.0f * r;
    r = r + (x < 0.0f) * b;
    b = (_fabs(x) < 0.000001f);
    c = !b;
    r = c * r;
    r = r + __atan2f_pi_2 * b;
    b = r + r;
    r = r - (y < 0.0f) * b;

    return r;
}

static double _asin(double x)
{
    return _atan2f(x, _sqrt(1.0 - x * x));
}
#endif /* __GNUC__ */

/* 获取俯仰角、偏航角、翻滚角 */
static void get_angle(icm_position_t dev, float ax, float ay, float az, float gx, float gy, float gz)
{
    float pitch = 0, roll = 0, yaw = 0;
    float norm;
    float vx, vy, vz;
    float ex, ey, ez;

    float q0q0 = q0 * q0;
    float q0q1 = q0 * q1;
    float q0q2 = q0 * q2;
    float q1q1 = q1 * q1;
    float q1q3 = q1 * q3;
    float q2q2 = q2 * q2;
    float q2q3 = q2 * q3;
    float q3q3 = q3 * q3;
    gx *= Gyro_Gr;
    gy *= Gyro_Gr;
    gz *= Gyro_Gr;

    if (az == 0)
        return;

#ifdef __GNUC__
    norm = _sqrt(ax * ax + ay * ay + az * az);
#else
    norm = sqrt(ax * ax + ay * ay + az * az);
#endif /* __GNUC__ */

    ax = ax / norm;
    ay = ay / norm;
    az = az / norm;

    vx = 2 * (q1q3 - q0q2);
    vy = 2 * (q0q1 + q2q3);
    vz = q0q0 - q1q1 - q2q2 + q3q3;

    ex = (ay * vz - az * vy);
    ey = (az * vx - ax * vz);
    ez = (ax * vy - ay * vx);

    exInt = exInt + ex * Ki;
    eyInt = eyInt + ey * Ki;
    ezInt = ezInt + ez * Ki;

    gx = gx + Kp * ex + exInt;
    gy = gy + Kp * ey + eyInt;
    gz = gz + Kp * ez + ezInt;

    q0 = q0 + (-q1 * gx - q2 * gy - q3 * gz) * halfT;
    q1 = q1 + (q0 * gx + q2 * gz - q3 * gy) * halfT;
    q2 = q2 + (q0 * gy - q1 * gz + q3 * gx) * halfT;
    q3 = q3 + (q0 * gz + q1 * gy - q2 * gx) * halfT;

#ifdef __GNUC__
    norm = _sqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
#else
    norm = sqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3);
#endif /* __GNUC__ */

    q0 = q0 / norm;
    q1 = q1 / norm;
    q2 = q2 / norm;
    q3 = q3 / norm;

#ifdef __GNUC__
    pitch = -_asin(2 * (q0 * q2 - q1 * q3)) * 57.2957795f;
    roll = _asin(2 * (q0 * q1 + q2 * q3)) * 57.2957795f;
    yaw = -_atan2f(2 * (q1 * q2 + q0 * q3), (q0q0 + q1q1 - q2q2 - q3q3)) * 57.29578f;
#else
    pitch = -asin(2 * (q0 * q2 - q1 * q3)) * 57.2957795f;
    roll = asin(2 * (q0 * q1 + q2 * q3)) * 57.2957795f;
    yaw = -atan2f(2 * (q1 * q2 + q0 * q3), (q0q0 + q1q1 - q2q2 - q3q3)) * 57.29578f;
#endif /* __GNUC__ */

    mouse_meas_check(&pitch);
    dev->x = pitch * mouse_ratio;
    mouse_meas_check(&roll);
    dev->y = roll * mouse_ratio;
    mouse_meas_check(&yaw);
    dev->z = yaw * mouse_ratio;
}

static void mouse_get_pos(icm_position_t dev)
{
    rt_err_t result;
    rt_int16_t accel_x, accel_y, accel_z;
    rt_int16_t gyros_x, gyros_y, gyros_z;

    RT_ASSERT(dev);

    result = rt_mutex_take(dev->lock, RT_WAITING_FOREVER);
    if (result != RT_EOK)
    {
        goto __exit;
    }

    result = icm20608_get_accel(dev->icm20608_device, &accel_x, &accel_y, &accel_z);
    if (result != RT_EOK)
    {
        rt_mutex_release(dev->lock);
        goto __exit;
    }

    result = icm20608_get_gyro(dev->icm20608_device, &gyros_x, &gyros_y, &gyros_z);
    if (result != RT_EOK)
    {
        rt_mutex_release(dev->lock);
        goto __exit;
    }

    get_angle(dev, (float)accel_x, (float)accel_y, (float)accel_z, (float)gyros_x, (float)gyros_y, (float)gyros_z);

    rt_mutex_release(dev->lock);

__exit:
    if (result != RT_EOK)
    {
        LOG_E("The sensor does not work");
        return;
    }
}

static icm_position_t mouse_init_icm(void)
{
    rt_err_t result;

    rt_thread_mdelay(1000);
    icm_device = rt_calloc(1, sizeof(struct icm_position));
    if (icm_device == RT_NULL)
    {
        LOG_E("Can't allocate memory for three-dimensional mouse ");

        return RT_NULL;
    }

    /* 初始化传感器 icm20608 */
    icm_device->icm20608_device = icm20608_init("i2c3");
    if (icm_device->icm20608_device == RT_NULL)
    {
        LOG_E("The sensor initializes failure");
        rt_free(icm_device);

        return RT_NULL;
    }
    else
    {
        LOG_D("The 3D mouse initializes success");
    }

    icm_device->lock = rt_mutex_create("mutex_mouse", RT_IPC_FLAG_FIFO);
    if (icm_device->lock == RT_NULL)
    {
        LOG_E("Can't create mutex for three-dimensional mouse");
        rt_free(icm_device);

        return RT_NULL;
    }

    mouse_sem = rt_sem_create("mouse_sem", 0, RT_IPC_FLAG_FIFO);
    if (mouse_sem == RT_NULL)
    {
        LOG_E("Can't create sem for mouse device");
        rt_mutex_delete(icm_device->lock);
        rt_free(icm_device);
        return 0;
    }

    /* 传感器零值校准 */
    result = icm20608_calib_level(icm_device->icm20608_device, 10);
    if (result != RT_EOK)
    {
        LOG_E("The sensor calibrates failure");
        rt_mutex_delete(icm_device->lock);
        rt_sem_delete(mouse_sem);
        rt_free(icm_device);

        return RT_NULL;
    }

    return icm_device;
}

static void mouse_go_release_status(void)
{
    /* 初始状态值 */
    rt_int8_t buff[4] = {0x08, 0, 0, 0};

    icm_device->buff[0] = buff[0];
    icm_device->buff[1] = buff[1];
    icm_device->buff[2] = buff[2];
    icm_device->buff[3] = buff[3];
}

static void mouse_send_data(rt_device_t device)
{
    RT_ASSERT(device != RT_NULL);

    rt_device_write(device, HID_REPORT_ID_MOUSE, icm_device->buff, 4);
    mouse_go_release_status();
}

/* 负值表示向左移动,正值表示向右移动 */
static void mouse_move_x(rt_device_t device, float ratio_x)
{
    RT_ASSERT(device != RT_NULL);

    if (icm_device->x < 0)
    {
        icm_device->buff[1] = (rt_int8_t)(-mouse_pixel_len * ratio_x);
    }
    else
    {
        icm_device->buff[1] = (rt_int8_t)(mouse_pixel_len * ratio_x);
    }

    mouse_send_data(device);
}

/* 正值表示向下移动,负值表示向上移动 */
static void mouse_move_y(rt_device_t device, float ratio_y)
{
    RT_ASSERT(device != RT_NULL);

    if (icm_device->y < 0)
    {
        icm_device->buff[2] = (rt_int8_t)(-mouse_pixel_len * ratio_y);
    }
    else
    {
        icm_device->buff[2] = (rt_int8_t)(mouse_pixel_len * ratio_y);
    }
    mouse_send_data(device);
}

static void mouse_move_xy(rt_device_t device, float ratio_x, float ratio_y)
{
    RT_ASSERT(device != RT_NULL);

    if (icm_device->x < 0)
    {
        icm_device->buff[1] = (rt_int8_t)(-mouse_pixel_len * ratio_x);
    }
    else
    {
        icm_device->buff[1] = (rt_int8_t)(mouse_pixel_len * ratio_x);
    }

    if (icm_device->y < 0)
    {
        icm_device->buff[2] = (rt_int8_t)(-mouse_pixel_len * ratio_y);
    }
    else
    {
        icm_device->buff[2] = (rt_int8_t)(mouse_pixel_len * ratio_y);
    }
    mouse_send_data(device);
}

static void usb_thread_entry(void *parameter)
{
    rt_device_t device = (rt_device_t)parameter;
    rt_uint8_t i = 0;

    while (1)
    {
        if (rt_sem_take(mouse_sem, RT_WAITING_FOREVER) == RT_EOK)
        {
            rt_uint8_t temp_x = 0, temp_y = 0, move_max = 0;
            float move_distance = 0.0f;

            rt_mutex_take(icm_device->lock, RT_WAITING_FOREVER);

#ifdef __GNUC__
            temp_x = (rt_uint8_t)_fabs(icm_device->x);
            temp_y = (rt_uint8_t)_fabs(icm_device->y);
            move_distance = _sqrt(temp_x * temp_x + temp_y * temp_y);
#else
            temp_x = (rt_uint8_t)fabs(icm_device->x);
            temp_y = (rt_uint8_t)fabs(icm_device->y);
            move_distance = sqrt(temp_x * temp_x + temp_y * temp_y);
#endif
            move_max = temp_x > temp_y ? temp_x : temp_y;

            /* 根据倾斜程度获取移动值 */
            for (i = 0; i < move_max / mouse_pixel_len; i++)
            {
                LOG_D("move_max :%4d, x: %4d, y :%4d ", move_max, temp_x, temp_y);
                if (i < temp_x && i < temp_y)
                {
                    mouse_move_xy(device, temp_x / move_distance, temp_y / move_distance);
                }
                else if (i < temp_x && i >= temp_y)
                {
                    mouse_move_x(device, temp_x / move_distance);
                }
                else if (i >= temp_x && i < temp_y)
                {
                    mouse_move_y(device, temp_y / move_distance);
                }
                else
                {
                    break;
                }
            }
            rt_mutex_release(icm_device->lock);
        }
        rt_thread_mdelay(mouse_sample_times);
    }
}

static void icm_thread_entry(void *parameter)
{
    while (1)
    {
        float temp_x = 0.0, temp_y = 0.0;

        rt_mutex_take(icm_device->lock, RT_WAITING_FOREVER);
        /* 获取鼠标移动范围 */
        mouse_get_pos(icm_device);

        /* 获取差值 */
        temp_x = icm_device->x - mouse_cmp_last_x;
        temp_y = icm_device->y - mouse_cmp_last_y;

        /* 避免抖动 */
        if (temp_x > mouse_rang_scope || temp_x < -mouse_rang_scope || temp_y > mouse_rang_scope || temp_y < -mouse_rang_scope)
        {
            /* 存储这次鼠标位移值 */
            mouse_cmp_last_x = icm_device->x;
            mouse_cmp_last_y = icm_device->y;
            rt_sem_release(mouse_sem);
        }
        rt_mutex_release(icm_device->lock);
        rt_thread_mdelay(mouse_sample_times);
    }
}

static void key_thread_entry(void *parameter)
{
    int mouse_key_2, mouse_key_0;
    rt_device_t device = (rt_device_t)parameter;
    rt_err_t result = -RT_ERROR;

    while (1)
    {
        if (rt_pin_read(PIN_KEY0) == PIN_LOW)
        {
            mouse_key_0 = 1;
        }
        else if (rt_pin_read(PIN_KEY2) == PIN_LOW)
        {
            mouse_key_2 = 1;
        }
        else
        {
            mouse_key_2 = 0;
            mouse_key_0 = 0;
        }

        if (mouse_key_2 | mouse_key_0)
        {
            result = rt_mutex_take(icm_device->lock, RT_WAITING_FOREVER);
            if (result == RT_EOK)
            {
                /* 获取鼠标键值,默认为 0 */
                icm_device->buff[0] = 0x08 | mouse_key_2 | mouse_key_0 << 1;
                if (mouse_key_2 & mouse_key_0)
                {
                    LOG_D("left & right down");
                }
                else if (mouse_key_2)
                {
                    LOG_D("left down");
                }
                else if (mouse_key_0)
                {
                    LOG_D("right down");
                }
                mouse_send_data(device);
                rt_mutex_release(icm_device->lock);
                rt_thread_mdelay(50);
            }
        }
        rt_thread_mdelay(mouse_sample_times / 5);
    }
}

static void mouse_init_key(void)
{
    /* 鼠标左键 */
    rt_pin_mode(PIN_KEY0, PIN_MODE_INPUT);
    /* 鼠标右键 */
    rt_pin_mode(PIN_KEY2, PIN_MODE_INPUT);
}

int main(void)
{
    return 0;
}

static int application_usb_init(void)
{
    /* 查找名称为 hidd 的设备 */
    rt_device_t device = rt_device_find("hidd");
    /* 初始化六轴传感器设备 */
    icm_device = mouse_init_icm();
    /* 初始化按键 */
    mouse_init_key();

    RT_ASSERT(device != RT_NULL);
    RT_ASSERT(icm_device != RT_NULL);

    /*打开查找到的 hid 设备 */
    rt_device_open(device, RT_DEVICE_FLAG_WRONLY);

    /* 初始化 USB 线程*/
    rt_thread_init(&usb_thread,
                   "hidd",
                   usb_thread_entry, device,
                   usb_thread_stack, sizeof(usb_thread_stack),
                   10, 20);
    rt_thread_startup(&usb_thread);

    /* 初始化六轴传感器线程 */
    rt_thread_init(&icm_thread,
                   "icm20608",
                   icm_thread_entry, RT_NULL,
                   icm_thread_stack, sizeof(icm_thread_stack),
                   10, 20);
    rt_thread_startup(&icm_thread);

    /* 初始化按键线程 */
    rt_thread_init(&key_thread,
                   "key",
                   key_thread_entry, device,
                   key_thread_stack, sizeof(key_thread_stack),
                   10, 20);
    rt_thread_startup(&key_thread);

    return 0;
}
INIT_APP_EXPORT(application_usb_init);

烧录完成后,将开发板上的USB OTG 连接PC端的USB接口,即可实现鼠标功能。



http://www.niftyadmin.cn/n/5863165.html

相关文章

ASP.NET MVC AJAX 文件上传

如何使用 MVC 5 和 AJAX&#xff08;.NET Framework&#xff09;上传文件。 使用AJAX和ASP.NET MVC 上传文件 再简单不过了。对于最纯粹的人来说&#xff0c;这不需要使用jQuery。此代码实际上允许上传多个文件。 注意&#xff1a;以下代码示例支持 ASP.NET MVC 5。如果使用 .…

【Java八股文】09-计算机操作系统面试篇

文章目录 计算机操作系统面试篇用户态和内核态的区别&#xff1f;用户态和内核态的区别&#xff1f; 进程管理线程和进程的区别是什么&#xff1f;进程&#xff0c;线程&#xff0c;协程的区别是什么&#xff1f;创建一个协程的过程线程运行过程中申请到的东西在切换时是否全部…

代码随想录算法训练营day42(0210)

困难暂时搁置&#xff0c;为了跟进度 1.买卖股票IV 题目 188. 买卖股票的最佳时机 IV 给你一个整数数组 prices 和一个整数 k &#xff0c;其中 prices[i] 是某支给定的股票在第 i 天的价格。 设计一个算法来计算你所能获取的最大利润。你最多可以完成 k 笔交易。也就是说…

picgo-plugin-huawei插件发布

picgo-plugin-huawei PicGo 和 PicGo-Core 华为云OBS上传插件。支持将图片上传到华为云对象存储&#xff0c;并作为图床使用。 功能特点 支持华为云 OBS 对象存储服务支持自定义存储路径支持自定义域名支持图片处理参数支持缓存控制详细的错误提示和日志记录 安装方法 方式…

Python简单使用MinerU

Python简单使用MinerU 1 简介 MinerU是国产的一款将PDF转化为机器可读格式的工具&#xff08;如markdown、json&#xff09;&#xff0c;可以很方便地抽取为任意格式。目前支持图像&#xff08;.jpg及.png&#xff09;、PDF、Word&#xff08;.doc及.docx&#xff09;、以及P…

C++STL容器之set

1.介绍 set容器是C标准模板库&#xff08;STL&#xff09;中的一个关联容器&#xff0c;用于存储唯一的元素。set中的元素是自动排序的&#xff0c;不允许重复。set通常基于红黑树&#xff08;一种自平衡二叉查找树&#xff09;实现&#xff0c;因此插入、删除和查找操作的时间…

C# 将非托管Dll嵌入exe中(一种实现方法)

一、环境准备 电脑系统:Windows 10 专业版 20H2 IDE:Microsoft Visual Studio Professional 2022 (64 位) - Current 版本 17.11.4 其他: 二、测试目的 将基于C++创建DLL库,封装到C#生成的exe中。 一般C++创建的库,在C#中使用,都是采用DllImport导入的,且要求库处…

[特殊字符] 蓝桥杯 Java B 组 之位运算(异或性质、二进制操作)

Day 6&#xff1a;位运算&#xff08;异或性质、二进制操作&#xff09; &#x1f4d6; 一、位运算简介 位运算是计算机底层优化的重要手段&#xff0c;利用二进制操作可以大大提高运算速度。常见的位运算包括&#xff1a; 与&#xff08;&&#xff09;&#xff1a;a &am…